Modulational instability in a PT-symmetric vector nonlinear Schrödinger system
نویسندگان
چکیده
منابع مشابه
Modulational Instability for Nonlinear Schrödinger Equations with a Periodic Potential
We study the stability properties of periodic solutions to the Nonlinear Schrödinger (NLS) equation with a periodic potential. We exploit the symmetries of the problem, in particular the Hamiltonian structure and the U(1) symmetry. We develop a simple sufficient criterion that guarantees the existence of a modulational instability spectrum along the imaginary axis. In the case of small amplitud...
متن کاملComplex PT-symmetric nonlinear Schrödinger equation and Burgers equation.
The complex -symmetric nonlinear wave models have drawn much attention in recent years since the complex -symmetric extensions of the Korteweg-de Vries (KdV) equation were presented in 2007. In this review, we focus on the study of the complex -symmetric nonlinear Schrödinger equation and Burgers equation. First of all, we briefly introduce the basic property of complex symmetry. We then report...
متن کاملModulational instability windows in the nonlinear Schrödinger equation involving higher-order Kerr responses.
We introduce a complete analytical and numerical study of the modulational instability process in a system governed by a canonical nonlinear Schrödinger equation involving local, arbitrary nonlinear responses to the applied field. In particular, our theory accounts for the recently proposed higher-order Kerr nonlinearities, providing very simple analytical criteria for the identification of mul...
متن کاملModulational instability in nonlocal nonlinear Kerr media.
We study modulational instability (MI) of plane waves in nonlocal nonlinear Kerr media. For a focusing nonlinearity we show that, although the nonlocality tends to suppress MI, it can never remove it completely, irrespective of the particular profile of the nonlocal response function. For a defocusing nonlinearity the stability properties depend sensitively on the response function profile: for...
متن کاملModulational instability in periodic quadratic nonlinear materials.
We investigate the modulational instability of plane waves in quadratic nonlinear materials with linear and nonlinear quasi-phase-matching gratings. Exact Floquet calculations, confirmed by numerical simulations, show that the periodicity can drastically alter the gain spectrum but never completely removes the instability. The low-frequency part of the gain spectrum is accurately predicted by a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physica D: Nonlinear Phenomena
سال: 2016
ISSN: 0167-2789
DOI: 10.1016/j.physd.2016.07.001